
High-Res Digital Surface Modeling using Fixed-Wing **UAV**-based Photogrammetry

Niels Anders, Rens Masselink, Saskia Keesstra, Juha Suomalainen

Outline

• Introduction

- Unmanned Aerial Systems
- Research objective

• Methods

- Study area
- Airplane specifications
- Flight campaign
- Data processing

Results

- Detail and accuracy
- Visualization of Land Surface Parameters
- Discussion
 - Pros and cons
 - Potential for geomorphometrical and geomorphological research
- Conclusions

What?

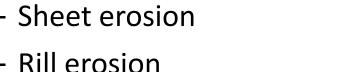
- Unmanned Aerial Systems
 - 1. Remotely Piloted Aircrafts
 - Rotary-wings, multicopters
 - Fixed-wing aircrafts

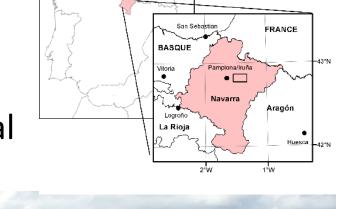
- 2. Flight planning software and GPS-based automated navigation
- Typical carrying capacity: 0.5 3kg
 - RGB cameras for photogrammetry
 - Multi-/hyperspectral sensing
 - Radar? LiDAR?

Why Unmanned Aerial Systems?

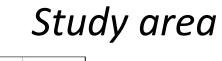
	Satellite	Manned Aircraft	Unmanned Aerial Systems	
			rotary wing	fixed-wing
Area coverage	++	+	-	+/-
Spatial resolution	-	+/-	+	+
Temporal resolution	-	+/-	+	+
Sensors	+	+	+/-	-
Costs	+/-	-	+	+

Research objective

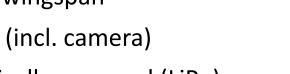

- Test UAS photogrammetry as a tool for acquisition of high-res multi-temporal digital surface models
 - Spatial resolution
 - Vertical accuracy
 - Effect of flight altitude
- Investigate the potential for geomorphological applications


- 2 km² agricultural catchment in Navarra, N-Spain
- 500-700 m; 700 mm mean annual precipitation
- Marls and clayey soils
- Erosion processes
 - Sheet erosion

GENINGEN UNIV


- Rill erosion
- Shallow landsliding

WAGENINGENUR

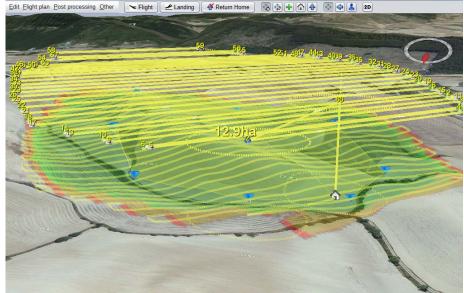

- MAVinci fixed-wing aircraft
 - 1.6 m wingspan
 - 2.6 kg (incl. camera)
 - Electrically powered (LiPo)
- Panasonic Lumix GX1
 - 16 MP, 2.5 fps
 - 20 mm f1.7 lens

GENINGEN UNIV

- Total costs: € 30 k, incl. software
 - *Ready-to-fly* for non-pilots

WAGENINGENUR

• Other *Do-It-Yourself* aircrafts for experienced pilots available from € 2 k



Airplane specifications

Flight planning software

- AOI selection on Google/Bing maps
- Defining ground sample distance
 - Flight altitude is estimated based on camera specifications
- Automated generation of flight plan (3D GPS waypoints)
- Possible optimizations for minimum flight length or topography

Ground targets

- 50 ground control targets
 - Self-placed targets and easy-to-identify fixed targets
- Measured with Leica dGPS system

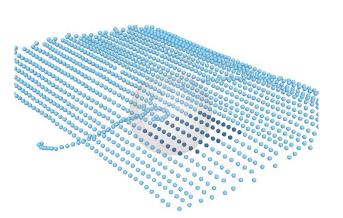
Flight campaign

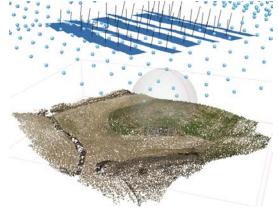
- Flight
 - Take off from hand
 - Wait for airplane to finish flight plan
 - Monitoring status on laptop
- Assist airplane to land
 - Manual mode
 - Assisted mode
 - Fully automatic
- Output: 8-bit JPEG
 - 65-85% side-/overlap

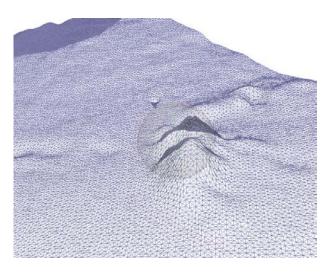
AGENINGEN UNIVERSITY

1-2 k images per 0.2 - 0.5 km²

WAGENINGENUR




Data processing


- Structure from Motion/MultiView Stereopsis
 - Agisoft PhotoScan Pro
 - VisualSfM

(open-source)

(commercial, \in 500)

Optional: GPS-tagged images

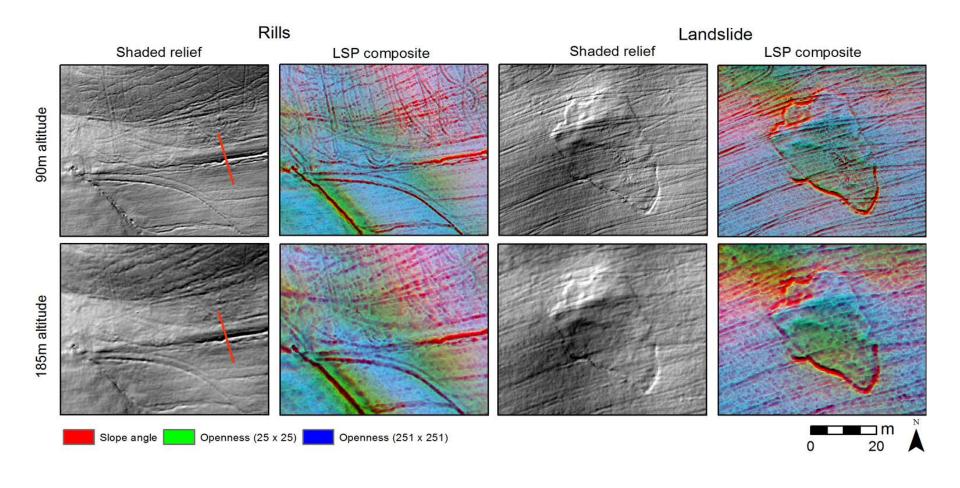
WAGENINGEN UNIVERSITY WAGENINGEN UR Camera alignment and matching image points (Structure-from-Motion)

Revisit images and calculating geometry/dense point cloud (MultiView stereopsis)

Dense point cloud

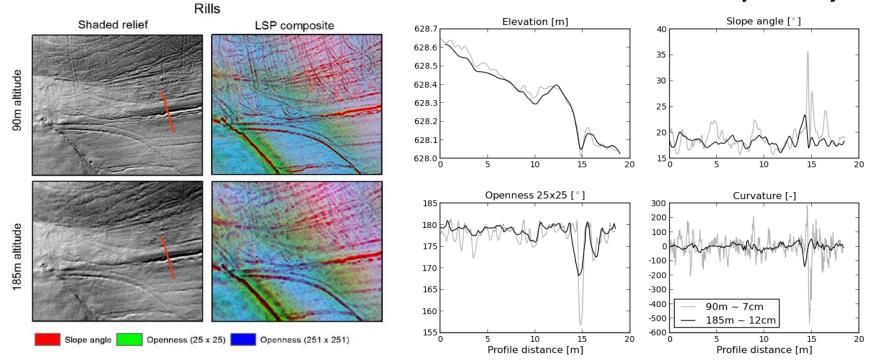
Data products

- Main data products
 - 3D point cloud
 - 750,000,000 Pts / 25ha
 - 3000 Pts / m²
 - Digital Surface Model
 - Weighted average
 - Natural Neighbor
 - Orthomosaic


Point cloud

Orthomosaic

DSM



Altitude versus data quality

Altitude versus data quality

Flight altitude [m]	GSD [cm]	DSM cell size [cm]	Standard deviation [cm]
90	1.5	7	35
185	3	12	45

WAGENINGEN UNIVERSITY WAGENINGEN UR

Discussion

Pros

- UAVs can be utilized at almost any moment in time (not too strong wind/rain) -> highly flexible for acquisition of multitemporal data
- Very high detail, even small rills and tractor paths are captured
- Continuous developments of light-weight sensors -> possible equipment in the near future
- Fully automated (with the exception of placing and identifying ground control points)

Discussion

Cons

- GSD is not uniform in areas with high relief. Effective resolution may be larger in lower situated areas.
- DEM quality is highly dependent on the number and distribution of ground control points. Inaccessible areas are prone to lower accuracy
- In highly vegetated areas there are few ground points
- Large areas -> many images -> long processing time
 - 1 k ~ few hours processing on a single modern PC

Outlook

- UAVs provide a flexible platform in both space and time for generation very high-resolution imagery and surface models
- More research is required to analyse the effect of amount and distribution of ground control points and increase DEM accuracy
- Potential applications in short-term geomorphological/ecological research and monitoring:
 - Detailed geomorphological change detection with multi-temporal DEMs after heavy rainfall events, earthquakes, etc.
 - Connectivity of rills or landscape objects
 - Quantifying vegetation dynamics or land use vs soil erosion
 - Analysing detailed glacial activity along seasons

