A Light-Weight Hyperspectral Mapping System for Unmanned Aerial Vehicles – The First Results

<u>Juha Suomalainen</u>, Niels Anders, Philip Wenting, Harm Bartholomeus, Lammert Kooistra Wageningen University, the Netherlands

Shahzad Iqbal, Dirk Hünniger, Rolf Becker Hochschule-Rhein-Waal, Germany

Jappe Franke, Alterra, the Netherlands

Contents

WUR Hyperspectral Mapping System

Custom lightweight system

Concept + hardware

Processing chain

Exploits photogrammetry

No external data needed

First result

Conclusions

Motivation

- Acquire high resolution hyperspectral datacube maps using a small Unmanned Aerial Vehicle
 - By high resolution we mean from a 10 centimeters to one meter
 - By small we mean 2kg payload
- We developed our own system because such commercial solutions were not available (last autumn)

Mapping Concept

- Aerialtronics Altura AT8
 - Programmable autonomous flight
 - 2kg payload
 - 5-10 min flight time
- Pushbroom spectrometer
 - 450-950nm
 - FWHM 9nm
 - 20 lines/s
- Consumer RGB camera
- GPS/Inertia navigation System
 - Accuracy: 4m / 0.25°

Sensor system main components

Spectrometer:

Smart Camera: Photonfocus SM2-D1312

Spectrograph: Specim ImSpector V10 2/3"

Optics: Specim OT-12 (f=12mm)

■ GPS/INS: XSens MTi-G-700

Camera: Panasonic GX1 + 14mm obj.

Data storage: RaspberryPI

Total: 2.0kg,12k€

Data acquisition

- Programmed block flight with the UAV
 - Up to 1km flight path
 - Speed 2-10 m/s
- Ground Sampling Distance (hyper / photo):
 - @30m: 9cm / 1.7cm
 - @120m: 36cm / 7cm
- Typical in-flight raw data set:
 - 5-10 000 spectrometer lines
 (328 cross pixels, 200 spectral pixels)
 - 125-250 photos (16 Mpix 12bit RAW)
 - GPS/INS data
 - Optional: RTK GPS Ground Control Points

Overview of processing chain

Photo radiometric processing

Custom Matlab script

As in field spectroscopy:

- 1. The raw images are loaded
- 2. Converted to radiance images using dark and flat field calibrations
- 3. Converted to reflectance factor images using empirical line correction
- 4. Stored as 16bit TIFFs
 No atmospheric modelling.

Reflectance factor

Datacube radiometric processing

Custom Matlab script

Same as with photos:

- 1. The raw spectrometer data are loaded
- 2. Converted to radiance spectra using dark and flat field calibrations
- 3. Converted to reflectance factor spectra using empirical line correction
- 4. Stored as 16bit ENVI BSQ

Digital Surface Model?

- To georecitify airborne data a Digital Elevation/Surface Model is needed.
- For 10cm resolution data we need one that...
 - ...describes the surface detailed enough
 - ...is co-register accurately to GPS/INS data

»Generate co-registered DSM using photogrammetry

Photogrammetry

- Photogrammetry produces a 3D model by analysing overlapping images
 - Works as our eyes do
- Iterative workflow:
 - Align images
 - Find tie points
 - Generate DSM

Photo Geometric Processing

- Agisoft PhotoScan Pro
- Geolocated with
 - GPS/INS data
 - RTK GPS Points
- Outputs
 - Digital Surface Model
 - Orthomosaic
 - Point cloud
 - Camera positions
 - 3D Model

DSM + RGB overlay

Datacube Geometric Processing

Custom Matlab script

- We have photogrammetric camera positions with accuracy of a few centimeters relative to the DSM!
- Photogrammetric camera positions are used to calibrate/stabilize the GPS/INS data relative to DSM
- The enhanced GPS/INS data provides spectrometer flight path with a few centimeter accuracy.

ReSe PARGE

Datacube is georectified using the photogrammetric DSM and the enhanced GPS/INS data

Mapping campaigns summer 2013

- First summer of operation
- ~100 campaign mapping flights
 - vdBorne (Varying fertilizers on potatoes)
 - Dronten (Time series on agricultural crops)
 - Bonaire (Status of coral reefs)
 - Unifarm(Wageningen), Soestduinen, Haus Riswick, Lisse, ...

Main experiment 2013

- Collecting time-series over potato field
- Varying nitrogen fertilizer: 167%, 100%, 56%, and 0% of the normal level
- Airborne and ground data on weekly basis
 - SPAD
 - LAI-2000
 - Cropscan

Results

- Flights at 100m altitude
- Pixel size
 - Orthophoto

0.05m

Hyperspectral

0.50m

Chlorophyll mapping

Potato fields on June 14th 2013

Chlorophyll red-edge index:

$$CI_{red\ edge} = (R_{780}/R_{710}) - 1$$

A. A. Gitelson, Y. Gritz, and M. N. Merzlyak, "Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves," *J. Plant Physiol.*, vol. 160, pp. 271–282, 2003.

Bonaire

- Mapping status of coral reefs with IMARES
- Airplane:
 - 50km of coast line
 - 5m resolution
- Kite:
 - 15km of coast line
 - 1m resolution

Conclusions

- We have developed a lightweight hyperspectral mapping system
 - for small UAVs/light platforms
 - 2kg on ready-to-fly
 - Off-the-shelf components
- Novel processeing chain:
 - Cutting-edge combo of photogrammetry + traditional hyperspectral georectification
 - Internally produced DSM
 - enhanced GPS/INS data

Thank you

juha.suomalainen@wur.nl

